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ABSTRACT
 

The evolution of Cloud Computing (CC) in Software Development (SD) has been significantly influenced 

by containerization, which provides application developers with an efficient method for distributing 

portable web applications. Docker, a widely adopted containerization platform, generates lightweight 

containers that simplify application delivery by reducing complexity in software component integration and 

configuration. Similarly, Kubernetes offers containerized application automation with capabilities for 

scaling, deployment, and resource management across clusters. This study focuses on enhancing software 

development in CC through an optimized Kubernetes approach, comparing it with Docker and conventional 

Kubernetes in terms of resource management and advanced integrations. Modern DevOps-based SD 

increasingly leverages containers and CC to achieve stability, portability, security, and scalability. Container 

as a Service (CaaS) integrates containerization with cloud infrastructure, offering flexible, scalable solutions. 

To date, no prior study has examined the technical configuration and deployment of CaaS using openSUSE 

Kubic in relation to the Linux kernel and operating system, tested via Pods from both service and replication 

perspectives. Experimental results demonstrate that openSUSE Kubic is highly streamlined and effective for 

CaaS development and deployment, providing software developers with a highly extensible and efficient 

environment for SD. 
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INTRODUCTION  
 
Cloud Computing (CC) is a method of sharing 
system resources among multiple users through 
various virtualization technologies, which has 
gained prominence due to its pay-as-you-go 
business model (Dimitri, 2020). This model 
requires payment for the exact amount of 
resources or services consumed, thereby reducing 
service costs and enabling users to scale services 
in line with evolving business needs. To access 
any type of service, a user must first register with 
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a Cloud Service Provider (CSP) by submitting an 
online request (Azadi et al., 2022). The CSP is 
responsible for responding to client requests 
while effectively managing computational 
resources. Various scheduling strategies are 
employed to ensure optimal resource 
management, as resource allocation and 
scheduling significantly influence the 
performance of CC applications. 
 
Effective task completion within specified 
deadlines is essential for maintaining high Quality 
of Service (QoS) and meeting Service Level 
Agreement (SLA) requirements. Load balancing 
plays a crucial role in enhancing CC performance 
(Kishor et al., 2021; Shahid et al., 2020). User 
workloads should be evenly distributed across 
available computing nodes, ensuring that no node 
becomes overloaded or underloaded (Kazeem 
Moses et al., 2021). Overloaded nodes may cause 
delays and missed deadlines, while underloaded 
nodes result in wasted computing resources and 
idle capacity. Therefore, the appropriate 
implementation of load balancing techniques can 
reduce response times and improve overall user 
satisfaction (Shafiq et al., 2021; Tong et al., 2020). 
Load balancing in CC can be achieved through 
several methods, including efficient task 
scheduling algorithms, resource migration, 
optimal resource allocation, resource reservation, 
and service migration (Nawrocki et al., 2021; Yin 
et al., 2021). In addition to the traditional CC 
service models—Infrastructure as a Service (IaaS), 
Platform as a Service (PaaS), and Software as a 
Service (SaaS)—various CSPs have introduced a 
newer model known as Container as a Service 
(CaaS). In CC, a container is a form of operating 
system virtualization. A container image 
comprises the runtime environment, system tools, 
application code, configuration settings, and 
library packages in a lightweight, self-contained, 
executable format, providing all that is required to 
run the software. Containers incorporate core 
components of OS-level virtualization, offering 
isolated environments without the need for an 
additional management layer such as a 
hypervisor (Maenhaut et al., 2020). 
 
Unlike virtual machines (VMs), containerization 
operates directly on the host OS infrastructure 

without a hypervisor. The container engine 
functions similarly to a hypervisor by creating 
and managing active container instances. As 
shown in Figure 1, multiple containers run on top 
of the container engine, sharing the same host OS 
while using only the necessary files—such as 
libraries and binaries—to execute application 
code. This makes containers lighter and more 
efficient than VMs (Bentaleb et al., 2022). In the 
CaaS model, infrastructure operates on the host 
OS, while the hypervisor—if used—resides on top 
of the host OS, managing virtual machines with 
their own guest operating systems. The container 
engine, however, operates directly on the user’s 
OS, building and maintaining active container 
instances. Each container package pulls required 
files from the OS, combining hardware and 
software virtualization in a hybrid approach to 
CC. 
 
Today, cloud customers often deploy applications 
to a single CSP. However, when extending these 
applications closer to users and edge devices, 
resource security across multiple CSP edges 
becomes important. This is more manageable 
when providers are integrated, enabling the 
customer to interact with one CSP interface while 
the provider manages workload distribution to 
other CSPs (Asad et al., 2020). Multitenancy 
ensures that each CSP can accommodate 
workloads from different providers, with a rule 
set governing resource allocation, isolated 
environments, user permissions, and resource 
sharing. These rules determine access privileges 
and their implications for tenants sharing similar 
assets. 
 
This paper presents a framework demonstrating 
the use of openSUSE Kubic for enhancing 
software development in CC applications. 
Deploying CaaS to the edge cloud is made 
possible through freely licensed, open-source 
extensions to the Kubernetes container 
orchestration system. The motivation for 
developing an optimized Kubernetes 
environment stems from the widespread 
familiarity and industry-standard adoption of 
Kubernetes as a container orchestration 
technology. 
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Figure 1 Container Architecture 

 

LITERATURE REVIEW 

Al Jawarneh et al. (2019) discussed that 

clients interested in deploying containerized 

services in Cloud Computing (CC) can utilise one 

of four widely available container orchestration 

systems—Apache Mesos, Docker Swarm, 

Rancher’s Cattle, and Kubernetes. Their study 

highlights Kubernetes as having emerged as the 

de facto industry standard, with all major Cloud 

Service Providers (CSPs) offering Kubernetes-

based CaaS to consumers (Table 1). 

Table 1 Main CSP offered with kubernetes-

based CaaS 

CSP Offered Kubernetes-
based CaaS 

Microsoft Azure Azure Kubernetes 
Services 

Amazon Web 
Services (AWS) 

Elastic Kubernetes 
Services 

Google Cloud 
Platform 

Google Kubernetes 
Services 

IBM Cloud IBM cloud Kubernetes 
Services 

Oracle Cloud Oracle container engine 
for kubernetes 

Alibaba Cloud Alibaba cloud container 
service for kubernetes 

Tencent Cloud Tencent Kubernetes 
engine 

Kumari et al. (2021) observed that, despite the 
growing adoption of containers, CC remains 
largely focused on supplying Virtual Machines 
(VMs), with cloud users typically billed according 
to the number of VMs allocated. Many 
applications, however, fail to fully utilise the 
allocated resources, leading to inefficiencies. They 
proposed a fine-grained cost model, making 
container-based deployment a cost-effective 
option and enabling serverless computing—a 
model in which cloud users supply only the code, 
while the CSP manages the execution 
environment for its entire lifecycle. 

Maenhaut et al. (2020) explained that cloud users 
are often charged based on the computing 
resources consumed by their applications. 
Serverless computing can simplify cloud 
deployment by removing the need to set up and 
maintain multiple services, thereby reducing 
costs—especially for small-scale operations. 
Containers, due to their fast start-up times and 
low overhead, have the potential to play a 
significant role in the future of serverless 
computing. Singh et al. (2020) proposed a CaaS 
technique for processing applications via edge 
computing, deploying it through Docker. Their 
integration of container services with data transfer 
solutions improved load balancing performance 
and supported Internet of Things (IoT) 
applications requiring low latency and high data 
transfer rates. They further presented a 
lightweight, energy-efficient CaaS method for 
delivering workloads to low-latency IoT 
applications, showing comparative advantages 
over other CaaS approaches. 

Saxena and Sharma (2021) emphasised that, in 
today’s diverse technological landscape, 
containers enhance operational efficiency, version 
control, developer productivity, and 
environmental consistency. Their work evaluated 
Docker’s performance in a CC environment using 
a range of applications and technologies. 
Similarly, Qiao et al. (2024) introduced 
EdgeOptimizer, a programmable containerised 
scheduler for time-critical tasks in Kubernetes-
based edge-cloud clusters. Their work addressed 
the increasing need for efficient service 
orchestration and request distribution in edge 
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computing, noting that traditional CC 
architectures are often unable to meet the 
demands of latency-sensitive services. 
Experimental results showed that EdgeOptimizer, 
which uses an optimised D3QN method, 
outperforms competing algorithms such as 
modified DDPG and Kubernetes-native 
approaches in terms of request execution rates. 

Oleghe (2021) examined challenges and strategies 
for container placement and migration in edge 
computing, noting that the proliferation of 
wireless devices and the demand for low-latency 
processing are expected to result in 75% of data 
being managed outside conventional data centres 
by 2025. The study highlighted container 
orchestration—particularly scheduling 
algorithms for allocating computational loads 
across heterogeneous edge nodes—as an NP-hard 
problem. Solutions explored include optimisation 
models, multidimensional selection approaches, 
and Markov Decision Processes. The research also 
emphasised the role of heuristic algorithms for 
achieving near-optimal solutions quickly and the 
benefits of decentralised scheduling to manage 
the growing complexity of edge environments. 

In summary, the reviewed literature highlights a 

strong trend towards container-based solutions in 

CC, with Kubernetes widely adopted as the 

orchestration standard. Containers improve 

performance by isolating application 

dependencies and streamlining OS patch 

management. Docker, among other platforms, has 

enabled microservices deployment on cloud 

infrastructures, allowing applications and data to 

be packaged for rapid deployment and reuse 

(Journal, 2020). 

 

RESEARCH METHODOLOGY 

This research was conducted using both hardware 
and software resources to implement and 
evaluate the proposed approach. The hardware 
setup included a system with 16 GB RAM, an Intel 
Core i7 processor, a 500 GB hard disk, and an 
internet modem. The primary software platform 
utilised was openSUSE Kubic (MicroOS) with 64-
bit Docker, Pods, and Kubernetes installed. The 

experimental phase took place between May 2020 
and mid-December 2020, conducted entirely 
online due to the COVID-19 pandemic. 

A Systematic Literature Review (SLR) 
methodology was adopted, drawing on references 
from published research articles, books, and 
reputable online sources related to Docker, 
Kubernetes, CaaS, containers, and other 
associated studies. The research emphasised 
operational functions within openSUSE Kubic, 
focusing on its ability to facilitate the 
development and deployment of CaaS through 
available modules. Each development step was 
carefully considered, with testing performed 
using Pods to assess service availability and 
replication processes. Observations were 
documented with screenshots, and all testing 
results were recorded, analysed, and discussed to 
address the study objectives. 

The openSUSE Linux online repository was used 
to support the setup, deployment, and testing 
stages. This repository provides a digital storage 
space for applications and libraries, which can be 
easily installed on the operating system as 
required. The repository, maintained by SUSE 
and mirrored locally in Indonesia, was accessed 
during the implementation phase. Both execution 
and evaluation phases followed the same test 
scenario design and research flowchart for a cloud 
user working with openSUSE Kubic. 

 
Figure 1. Proposed architecture of CaaS for 

providing improved CSP 
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The test scenario involved installing and 
configuring openSUSE Kubic to develop, deploy, 
and test CaaS using Pods. The PC used in testing 
also had Kubernetes and Docker with Pods 
installed. The research flow outlined each stage 
and method employed in the investigation. Figure 
1 illustrates the complete process of CaaS 
operation in cloud services using containers. 

 
Installation of openSUSE Kubic Repository 

and with Administration Setting 

 

 The first stage involved installing 

openSUSE Kubic on the system. This included 

loading the OpenSUSE MicroOS.iso file, 

following the on-screen setup instructions, 

specifying the system role in the configuration 

screen for the Kubeadm Node using the kubeadm 

init command, setting the root password, and 

configuring the online repositories. In this study, 

the system role was configured as a Kubeadm 

Node (Figure 2). 

 
Figure 2 Installation of Kubic admin node 

 Following installation, the system was 

accessed via root login. The master cluster was 

established by executing the kubeadm init 

command. After the cluster was built and 

initialised, the kubeadm join command was used 

to connect nodes to the cluster via an 

authentication token (Figure 3). 

 

 

 

Figure 3 Root login process of kube 

configuration 

The node status was then verified using 

the kubectl get nodes command, which confirmed 

a single node, localhost, with master status. To 

remove restrictions on running Pods on the 

master node, the command kubectl taint nodes --

all node.role.kubernetes.io/master-

node/localhost untainted was executed. Figure 4 

shows the verification process for node status and 

master node configuration. 

 

 

Figure 4 Verification of Master node in kube 

configuration 

Once the CaaS setup with openSUSE Kubic was 
completed successfully, the deployment stage 
began. The hello-kubic.yaml file, located at 
/usr/share/k8s-yaml/hello-kubic, was used as a 
Pod for deployment. The deployment was 
executed using the command: 

kubectl apply -f /usr/share/k8s-yaml/hello-

kubic/hello-kubic.yaml 

 

(Figure 5). After deployment, the Pod status was 

verified with the kubectl get deployment and 

kubectl get pods commands, showing that the 

hello-kubic Pod successfully replicated three 

times, with all replicas ready and running 
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Figure 5 Testing of Hello-Kubic pod 

 

Finally, the status of running services was 

checked using the kubectl get svc command 

(Figure 6). The results confirmed that the services 

were successfully developed and deployed, 

meeting the intended CaaS configuration and 

testing requirements. 

 

 

Figure 6 Outcome of user service Hello-kube 

pod  

 

RESULT AND DISCUSSION 

Containers function as a form of virtualisation in 
which resources and services operate in separate 
drivers, libraries, and binaries while sharing the 
host operating system (OS). This approach allows 
multiple containers to run on the same system 
using the OS kernel, with each container 
functioning as a distinct process. Containers 
include only the necessary libraries and 
dependencies required for execution, making 
them more efficient and lightweight compared to 
other virtualisation methods. 

Container as a Service (CaaS) is a container-based 
service model within the CC infrastructure that 
consolidates all operational services. It accelerates 
software development (SD) by enhancing 
scalability, security, and efficiency, while also 
providing greater flexibility. In the proposed 
approach, both containerisation using openSUSE 
Kubic and Docker-based containerisation were 
implemented for comparison. 

For performance evaluation, various Quality of 
Service (QoS) metrics were considered for CC 
application testing, including: 

 Deployment speed 
 Resource utilisation 
 Scalability 
 Fault tolerance 
 Network efficiency 

Table 2 presents a comparison of the implemented 

openSUSE Kubic Pods and Docker 

containerisation across these metrics 

 

Table 2 Comparison of CC application 

metrics with various types of containerization 

 

Metrics openSUSE 
Kubic 

Dockers 

Deployment 
speed (Sec) 

32 47 

Resource 
utilization (CPU 
%) 

83 69 

Scalability (Max 
pod ) 

995 255 

Network 
efficiency (ms) 

20 30 

Fault Tolerance 
(Sec) 

3 15 

The results indicate that openSUSE Kubic 
achieves a shorter deployment time (32 seconds) 
compared to Docker (47 seconds) and supports 
significantly higher scalability (995 Pods versus 
255 Pods). Network efficiency is also improved, 
with a latency of 20 ms compared to Docker’s 30 
ms. Resource utilisation is higher for openSUSE 
Kubic (83%) compared to Docker (69%), 
indicating more efficient CPU usage. 
Additionally, fault tolerance—the time taken to 
recover from a failure—is markedly lower in 
openSUSE Kubic (3 seconds) than in Docker (15 
seconds).  

These findings are visually represented in Figure 
7, which compares QoS metrics for the two 
containerisation approaches. 
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Figure 7 Comparison of QoS metrics for 

various type of containerization 

From these results, it is evident that openSUSE 
Kubic offers advantages in scalability, network 
efficiency, and fault tolerance, making it 
particularly well-suited for small-scale 
applications and development environments that 
require rapid and efficient virtual application 
deployment. Furthermore, its compatibility with 
CI/CD pipelines enables faster development 
cycles, continuous integration, and seamless 
testing. 

In contrast, Docker’s relative simplicity and 

flexibility make it an attractive choice when 

deployment requirements are less complex or 

when continuous development must continue 

after deployment. While Docker remains widely 

adopted for its lightweight architecture and 

adaptability, the enhanced scalability and 

performance characteristics of openSUSE Kubic 

provide compelling benefits for cloud-native 

application development in CC environments. 

CONCLUSION 

The results of this study demonstrate that 
openSUSE Kubic provides a reliable and efficient 
platform for developing and deploying Container 
as a Service (CaaS) to manage multiple 
applications and services within a containerised 
environment. By incorporating Kubernetes and 
Pod support, openSUSE Kubic enables rapid 
deployment, scalability, load balancing, and self-

recovery—features essential for modern cloud-
based software systems. 

Kubernetes, when properly configured, offers a 
robust solution for orchestrating distributed 
virtual nodes, making it highly effective for large-
scale and geographically dispersed deployments. 
Although Kubernetes can be complex to 
implement—particularly in multi-cloud 
environments—its flexibility and operational 
efficiency make it a preferred choice for 
organisations seeking advanced container 
orchestration capabilities. 

This study recommends that organisations 
evaluate both Docker and Kubernetes before 
selecting a deployment strategy, considering 
factors such as application complexity, required 
scalability, and operational objectives. Ultimately, 
containerisation delivers key benefits in 
portability, scalability, and optimised resource 
utilisation, positioning it as a cornerstone 
technology in current CC-based software 
development. Leveraging openSUSE Kubic, 
combined with the open-source Linux kernel, 
provides developers and software entrepreneurs 
with a streamlined, cost-effective, and powerful 
solution for deploying CaaS in diverse application 
environments. 
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