

J. Sci. Trans. Environ. Technov.2024, 18 (1) :1 - 9

Software Development Improvement in CC using Containerization as a

Service (CaaS)

Mr. A. Karthikeyan 1*, Dr. K. Loheswaran2, Ms. M. Vani3 and Ms. S. Geetha4

 1 Assistant Professor, Department of Computer Science and Engineering, Mahendra Engineering College

(Autonomous), Namakkal. E mail: karthikeyana.be@gmail.com
2,3,4 Assistant Professors, Department of Computer Science and Engineering, Mahendra Engineering College

(Autonomous), Namakkal.

Article History
 Received: 10.07.2024

 Revised and Accepted: 20.08.2024

 Published: 25.09.2024

ABSTRACT

The evolution of Cloud Computing (CC) in Software Development (SD) has been significantly influenced

by containerization, which provides application developers with an efficient method for distributing

portable web applications. Docker, a widely adopted containerization platform, generates lightweight

containers that simplify application delivery by reducing complexity in software component integration and

configuration. Similarly, Kubernetes offers containerized application automation with capabilities for

scaling, deployment, and resource management across clusters. This study focuses on enhancing software

development in CC through an optimized Kubernetes approach, comparing it with Docker and conventional

Kubernetes in terms of resource management and advanced integrations. Modern DevOps-based SD

increasingly leverages containers and CC to achieve stability, portability, security, and scalability. Container

as a Service (CaaS) integrates containerization with cloud infrastructure, offering flexible, scalable solutions.

To date, no prior study has examined the technical configuration and deployment of CaaS using openSUSE

Kubic in relation to the Linux kernel and operating system, tested via Pods from both service and replication

perspectives. Experimental results demonstrate that openSUSE Kubic is highly streamlined and effective for

CaaS development and deployment, providing software developers with a highly extensible and efficient

environment for SD.

Keywords: Cloud computing, Container as a Service, containerization, DevOps, openSUSE Kubic,

software development

 Mr. A. Karthikeyan

Assistant Professor, Department of Computer

Science and Engineering, Mahendra Engineering

College (Autonomous), Namakkal.

E mail: karthikeyana.be@gmail.com

P-ISSN 0973-9157

E-ISSN 2393-9249

1

INTRODUCTION

Cloud Computing (CC) is a method of sharing
system resources among multiple users through
various virtualization technologies, which has
gained prominence due to its pay-as-you-go
business model (Dimitri, 2020). This model
requires payment for the exact amount of
resources or services consumed, thereby reducing
service costs and enabling users to scale services
in line with evolving business needs. To access
any type of service, a user must first register with

https://doi.org/10.56343/STET.116.018.001.001 www.stetjournals.com

J. Sci. Trans. Environ. Technov.2024 2

a Cloud Service Provider (CSP) by submitting an
online request (Azadi et al., 2022). The CSP is
responsible for responding to client requests
while effectively managing computational
resources. Various scheduling strategies are
employed to ensure optimal resource
management, as resource allocation and
scheduling significantly influence the
performance of CC applications.

Effective task completion within specified
deadlines is essential for maintaining high Quality
of Service (QoS) and meeting Service Level
Agreement (SLA) requirements. Load balancing
plays a crucial role in enhancing CC performance
(Kishor et al., 2021; Shahid et al., 2020). User
workloads should be evenly distributed across
available computing nodes, ensuring that no node
becomes overloaded or underloaded (Kazeem
Moses et al., 2021). Overloaded nodes may cause
delays and missed deadlines, while underloaded
nodes result in wasted computing resources and
idle capacity. Therefore, the appropriate
implementation of load balancing techniques can
reduce response times and improve overall user
satisfaction (Shafiq et al., 2021; Tong et al., 2020).
Load balancing in CC can be achieved through
several methods, including efficient task
scheduling algorithms, resource migration,
optimal resource allocation, resource reservation,
and service migration (Nawrocki et al., 2021; Yin
et al., 2021). In addition to the traditional CC
service models—Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a
Service (SaaS)—various CSPs have introduced a
newer model known as Container as a Service
(CaaS). In CC, a container is a form of operating
system virtualization. A container image
comprises the runtime environment, system tools,
application code, configuration settings, and
library packages in a lightweight, self-contained,
executable format, providing all that is required to
run the software. Containers incorporate core
components of OS-level virtualization, offering
isolated environments without the need for an
additional management layer such as a
hypervisor (Maenhaut et al., 2020).

Unlike virtual machines (VMs), containerization
operates directly on the host OS infrastructure

without a hypervisor. The container engine
functions similarly to a hypervisor by creating
and managing active container instances. As
shown in Figure 1, multiple containers run on top
of the container engine, sharing the same host OS
while using only the necessary files—such as
libraries and binaries—to execute application
code. This makes containers lighter and more
efficient than VMs (Bentaleb et al., 2022). In the
CaaS model, infrastructure operates on the host
OS, while the hypervisor—if used—resides on top
of the host OS, managing virtual machines with
their own guest operating systems. The container
engine, however, operates directly on the user’s
OS, building and maintaining active container
instances. Each container package pulls required
files from the OS, combining hardware and
software virtualization in a hybrid approach to
CC.

Today, cloud customers often deploy applications
to a single CSP. However, when extending these
applications closer to users and edge devices,
resource security across multiple CSP edges
becomes important. This is more manageable
when providers are integrated, enabling the
customer to interact with one CSP interface while
the provider manages workload distribution to
other CSPs (Asad et al., 2020). Multitenancy
ensures that each CSP can accommodate
workloads from different providers, with a rule
set governing resource allocation, isolated
environments, user permissions, and resource
sharing. These rules determine access privileges
and their implications for tenants sharing similar
assets.

This paper presents a framework demonstrating
the use of openSUSE Kubic for enhancing
software development in CC applications.
Deploying CaaS to the edge cloud is made
possible through freely licensed, open-source
extensions to the Kubernetes container
orchestration system. The motivation for
developing an optimized Kubernetes
environment stems from the widespread
familiarity and industry-standard adoption of
Kubernetes as a container orchestration
technology.

3 J. Sci. Trans. Environ. Technov.2024

Figure 1 Container Architecture

LITERATURE REVIEW

Al Jawarneh et al. (2019) discussed that

clients interested in deploying containerized

services in Cloud Computing (CC) can utilise one

of four widely available container orchestration

systems—Apache Mesos, Docker Swarm,

Rancher’s Cattle, and Kubernetes. Their study

highlights Kubernetes as having emerged as the

de facto industry standard, with all major Cloud

Service Providers (CSPs) offering Kubernetes-

based CaaS to consumers (Table 1).

Table 1 Main CSP offered with kubernetes-

based CaaS

CSP Offered Kubernetes-
based CaaS

Microsoft Azure Azure Kubernetes
Services

Amazon Web
Services (AWS)

Elastic Kubernetes
Services

Google Cloud
Platform

Google Kubernetes
Services

IBM Cloud IBM cloud Kubernetes
Services

Oracle Cloud Oracle container engine
for kubernetes

Alibaba Cloud Alibaba cloud container
service for kubernetes

Tencent Cloud Tencent Kubernetes
engine

Kumari et al. (2021) observed that, despite the
growing adoption of containers, CC remains
largely focused on supplying Virtual Machines
(VMs), with cloud users typically billed according
to the number of VMs allocated. Many
applications, however, fail to fully utilise the
allocated resources, leading to inefficiencies. They
proposed a fine-grained cost model, making
container-based deployment a cost-effective
option and enabling serverless computing—a
model in which cloud users supply only the code,
while the CSP manages the execution
environment for its entire lifecycle.

Maenhaut et al. (2020) explained that cloud users
are often charged based on the computing
resources consumed by their applications.
Serverless computing can simplify cloud
deployment by removing the need to set up and
maintain multiple services, thereby reducing
costs—especially for small-scale operations.
Containers, due to their fast start-up times and
low overhead, have the potential to play a
significant role in the future of serverless
computing. Singh et al. (2020) proposed a CaaS
technique for processing applications via edge
computing, deploying it through Docker. Their
integration of container services with data transfer
solutions improved load balancing performance
and supported Internet of Things (IoT)
applications requiring low latency and high data
transfer rates. They further presented a
lightweight, energy-efficient CaaS method for
delivering workloads to low-latency IoT
applications, showing comparative advantages
over other CaaS approaches.

Saxena and Sharma (2021) emphasised that, in
today’s diverse technological landscape,
containers enhance operational efficiency, version
control, developer productivity, and
environmental consistency. Their work evaluated
Docker’s performance in a CC environment using
a range of applications and technologies.
Similarly, Qiao et al. (2024) introduced
EdgeOptimizer, a programmable containerised
scheduler for time-critical tasks in Kubernetes-
based edge-cloud clusters. Their work addressed
the increasing need for efficient service
orchestration and request distribution in edge

J. Sci. Trans. Environ. Technov.2024 4

computing, noting that traditional CC
architectures are often unable to meet the
demands of latency-sensitive services.
Experimental results showed that EdgeOptimizer,
which uses an optimised D3QN method,
outperforms competing algorithms such as
modified DDPG and Kubernetes-native
approaches in terms of request execution rates.

Oleghe (2021) examined challenges and strategies
for container placement and migration in edge
computing, noting that the proliferation of
wireless devices and the demand for low-latency
processing are expected to result in 75% of data
being managed outside conventional data centres
by 2025. The study highlighted container
orchestration—particularly scheduling
algorithms for allocating computational loads
across heterogeneous edge nodes—as an NP-hard
problem. Solutions explored include optimisation
models, multidimensional selection approaches,
and Markov Decision Processes. The research also
emphasised the role of heuristic algorithms for
achieving near-optimal solutions quickly and the
benefits of decentralised scheduling to manage
the growing complexity of edge environments.

In summary, the reviewed literature highlights a

strong trend towards container-based solutions in

CC, with Kubernetes widely adopted as the

orchestration standard. Containers improve

performance by isolating application

dependencies and streamlining OS patch

management. Docker, among other platforms, has

enabled microservices deployment on cloud

infrastructures, allowing applications and data to

be packaged for rapid deployment and reuse

(Journal, 2020).

RESEARCH METHODOLOGY

This research was conducted using both hardware
and software resources to implement and
evaluate the proposed approach. The hardware
setup included a system with 16 GB RAM, an Intel
Core i7 processor, a 500 GB hard disk, and an
internet modem. The primary software platform
utilised was openSUSE Kubic (MicroOS) with 64-
bit Docker, Pods, and Kubernetes installed. The

experimental phase took place between May 2020
and mid-December 2020, conducted entirely
online due to the COVID-19 pandemic.

A Systematic Literature Review (SLR)
methodology was adopted, drawing on references
from published research articles, books, and
reputable online sources related to Docker,
Kubernetes, CaaS, containers, and other
associated studies. The research emphasised
operational functions within openSUSE Kubic,
focusing on its ability to facilitate the
development and deployment of CaaS through
available modules. Each development step was
carefully considered, with testing performed
using Pods to assess service availability and
replication processes. Observations were
documented with screenshots, and all testing
results were recorded, analysed, and discussed to
address the study objectives.

The openSUSE Linux online repository was used
to support the setup, deployment, and testing
stages. This repository provides a digital storage
space for applications and libraries, which can be
easily installed on the operating system as
required. The repository, maintained by SUSE
and mirrored locally in Indonesia, was accessed
during the implementation phase. Both execution
and evaluation phases followed the same test
scenario design and research flowchart for a cloud
user working with openSUSE Kubic.

Figure 1. Proposed architecture of CaaS for

providing improved CSP

5 J. Sci. Trans. Environ. Technov.2024

The test scenario involved installing and
configuring openSUSE Kubic to develop, deploy,
and test CaaS using Pods. The PC used in testing
also had Kubernetes and Docker with Pods
installed. The research flow outlined each stage
and method employed in the investigation. Figure
1 illustrates the complete process of CaaS
operation in cloud services using containers.

Installation of openSUSE Kubic Repository

and with Administration Setting

 The first stage involved installing

openSUSE Kubic on the system. This included

loading the OpenSUSE MicroOS.iso file,

following the on-screen setup instructions,

specifying the system role in the configuration

screen for the Kubeadm Node using the kubeadm

init command, setting the root password, and

configuring the online repositories. In this study,

the system role was configured as a Kubeadm

Node (Figure 2).

Figure 2 Installation of Kubic admin node

 Following installation, the system was

accessed via root login. The master cluster was

established by executing the kubeadm init

command. After the cluster was built and

initialised, the kubeadm join command was used

to connect nodes to the cluster via an

authentication token (Figure 3).

Figure 3 Root login process of kube

configuration

The node status was then verified using

the kubectl get nodes command, which confirmed

a single node, localhost, with master status. To

remove restrictions on running Pods on the

master node, the command kubectl taint nodes --

all node.role.kubernetes.io/master-

node/localhost untainted was executed. Figure 4

shows the verification process for node status and

master node configuration.

Figure 4 Verification of Master node in kube

configuration

Once the CaaS setup with openSUSE Kubic was
completed successfully, the deployment stage
began. The hello-kubic.yaml file, located at
/usr/share/k8s-yaml/hello-kubic, was used as a
Pod for deployment. The deployment was
executed using the command:

kubectl apply -f /usr/share/k8s-yaml/hello-

kubic/hello-kubic.yaml

(Figure 5). After deployment, the Pod status was

verified with the kubectl get deployment and

kubectl get pods commands, showing that the

hello-kubic Pod successfully replicated three

times, with all replicas ready and running

J. Sci. Trans. Environ. Technov.2024 6

Figure 5 Testing of Hello-Kubic pod

Finally, the status of running services was

checked using the kubectl get svc command

(Figure 6). The results confirmed that the services

were successfully developed and deployed,

meeting the intended CaaS configuration and

testing requirements.

Figure 6 Outcome of user service Hello-kube

pod

RESULT AND DISCUSSION

Containers function as a form of virtualisation in
which resources and services operate in separate
drivers, libraries, and binaries while sharing the
host operating system (OS). This approach allows
multiple containers to run on the same system
using the OS kernel, with each container
functioning as a distinct process. Containers
include only the necessary libraries and
dependencies required for execution, making
them more efficient and lightweight compared to
other virtualisation methods.

Container as a Service (CaaS) is a container-based
service model within the CC infrastructure that
consolidates all operational services. It accelerates
software development (SD) by enhancing
scalability, security, and efficiency, while also
providing greater flexibility. In the proposed
approach, both containerisation using openSUSE
Kubic and Docker-based containerisation were
implemented for comparison.

For performance evaluation, various Quality of
Service (QoS) metrics were considered for CC
application testing, including:

 Deployment speed
 Resource utilisation
 Scalability
 Fault tolerance
 Network efficiency

Table 2 presents a comparison of the implemented

openSUSE Kubic Pods and Docker

containerisation across these metrics

Table 2 Comparison of CC application

metrics with various types of containerization

Metrics openSUSE
Kubic

Dockers

Deployment
speed (Sec)

32 47

Resource
utilization (CPU
%)

83 69

Scalability (Max
pod)

995 255

Network
efficiency (ms)

20 30

Fault Tolerance
(Sec)

3 15

The results indicate that openSUSE Kubic
achieves a shorter deployment time (32 seconds)
compared to Docker (47 seconds) and supports
significantly higher scalability (995 Pods versus
255 Pods). Network efficiency is also improved,
with a latency of 20 ms compared to Docker’s 30
ms. Resource utilisation is higher for openSUSE
Kubic (83%) compared to Docker (69%),
indicating more efficient CPU usage.
Additionally, fault tolerance—the time taken to
recover from a failure—is markedly lower in
openSUSE Kubic (3 seconds) than in Docker (15
seconds).

These findings are visually represented in Figure
7, which compares QoS metrics for the two
containerisation approaches.

7 J. Sci. Trans. Environ. Technov.2024

Figure 7 Comparison of QoS metrics for

various type of containerization

From these results, it is evident that openSUSE
Kubic offers advantages in scalability, network
efficiency, and fault tolerance, making it
particularly well-suited for small-scale
applications and development environments that
require rapid and efficient virtual application
deployment. Furthermore, its compatibility with
CI/CD pipelines enables faster development
cycles, continuous integration, and seamless
testing.

In contrast, Docker’s relative simplicity and

flexibility make it an attractive choice when

deployment requirements are less complex or

when continuous development must continue

after deployment. While Docker remains widely

adopted for its lightweight architecture and

adaptability, the enhanced scalability and

performance characteristics of openSUSE Kubic

provide compelling benefits for cloud-native

application development in CC environments.

CONCLUSION

The results of this study demonstrate that
openSUSE Kubic provides a reliable and efficient
platform for developing and deploying Container
as a Service (CaaS) to manage multiple
applications and services within a containerised
environment. By incorporating Kubernetes and
Pod support, openSUSE Kubic enables rapid
deployment, scalability, load balancing, and self-

recovery—features essential for modern cloud-
based software systems.

Kubernetes, when properly configured, offers a
robust solution for orchestrating distributed
virtual nodes, making it highly effective for large-
scale and geographically dispersed deployments.
Although Kubernetes can be complex to
implement—particularly in multi-cloud
environments—its flexibility and operational
efficiency make it a preferred choice for
organisations seeking advanced container
orchestration capabilities.

This study recommends that organisations
evaluate both Docker and Kubernetes before
selecting a deployment strategy, considering
factors such as application complexity, required
scalability, and operational objectives. Ultimately,
containerisation delivers key benefits in
portability, scalability, and optimised resource
utilisation, positioning it as a cornerstone
technology in current CC-based software
development. Leveraging openSUSE Kubic,
combined with the open-source Linux kernel,
provides developers and software entrepreneurs
with a streamlined, cost-effective, and powerful
solution for deploying CaaS in diverse application
environments.

REFERENCE

Al Jawarneh, I.M., Bellavista, P., Bosi, F., Foschini,
L., Martuscelli, G., Montanari, R. &
Palopoli, A. 2019. Container
orchestration engines: A thorough
functional and performance
comparison. Proceedings of the IEEE
International Conference on
Communications (ICC).
https://doi.org/10.1109/ICC.2019.87
62053

Asad, J., Robert, J., Heljanko, K. & Främling, K.
2020. IoTEF: A federated edge-cloud
architecture for fault-tolerant IoT
applications. Journal of Grid
Computing, 18(1), pp.57–80.
https://doi.org/10.1007/s10723-019-
09498-8

https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1007/s10723-019-09498-8
https://doi.org/10.1007/s10723-019-09498-8

J. Sci. Trans. Environ. Technov.2024 8

Azadi, M., Emrouznejad, A., Ramezani, F. &
Hussain, F.K. 2022. Efficiency
measurement of cloud service
providers using network data
envelopment analysis. IEEE
Transactions on Cloud Computing, 10(1),
pp.348–355.

Bentaleb, O., Belloum, A.S.Z., Sebaa, A. & El-
Maouhab, A. 2022. Containerization
technologies: Taxonomies,
applications and challenges. The
Journal of Supercomputing, 78(1),
pp.1144–1181.
https://doi.org/10.1007/s11227-021-
03914-1

Dai, Y., Xu, D., Maharjan, S., Qiao, G. & Zhang, Y.
2019. Artificial intelligence
empowered edge computing and
caching for internet of vehicles. IEEE
Wireless Communications, 26(3), pp.12–
18.

Dimitri, N. 2020. Pricing cloud IaaS computing
services. Journal of Cloud Computing, 9,
p.14.

Isam, M., Kumari, A., Sahoo, B., Behera, R.K.,
Misra, S. & Sharma, M.M. 2021.
Evaluation of integrated frameworks
for optimising QoS in serverless
computing. In: International Conference
on Computational Science and Its
Applications. Cham: Springer, pp.277–
288.

Journal, I.J.E.T.R.M. 2020. Containerized web
application and deployment on cloud.
IJETRM Journal.

Kazeem, M.A., Joseph, B.A., Roseline, O.O., Misra,
S. & Abidemi, E.A. 2021. Applicability
of MMRR load balancing algorithm in
cloud computing. International Journal
of Computer Mathematics: Computer
Systems Theory, 6(1), pp.7–20.

Kishor, A., Niyogi, R., Chronopoulos, A. &
Zomaya, A. 2021. Latency and energy-
aware load balancing in cloud data
centres: A bargaining game-based
approach. IEEE Transactions on Cloud
Computing.

Maenhaut, P.J., Volckaert, B., Ongenae, V. & De
Turck, F. 2020. Resource management
in a containerized cloud: Status and
challenges. Journal of Network and
Systems Management, 28, pp.197–246.
https://doi.org/10.1007/s10922-019-
09504-0

Nawrocki, P., Grzywacz, M. & Sniezynski, B. 2021.
Adaptive resource planning for cloud-
based services using machine
learning. Journal of Parallel and
Distributed Computing, 152, pp.88–97.

Oleghe, O. 2021. Container placement and
migration in edge computing:
Concept and scheduling models. IEEE
Access, 9, pp.68028–68043.

Qiao, Y., Shen, S., Zhang, C., Wang, W., Qiu, T. &
Wang, X. 2024. EdgeOptimizer: A
programmable containerized
scheduler of time-critical tasks in
Kubernetes-based edge-cloud
clusters. Future Generation Computer
Systems, 156, pp.221–230.
https://doi.org/10.1016/j.future.202
4.03.007

Saxena, D. & Sharma, N. 2021. Analysis of Docker
performance in cloud environment.
In: Advances in Information
Communication Technology and
Computing. Berlin/Heidelberg:
Springer, pp.9–18.

Shafiq, D.A., Jhanjhi, N. & Abdullah, A. 2021.
Load balancing techniques in cloud
computing environment: A review.
Journal of King Saud University –
Computer and Information Sciences, 34,
pp.3910–3933.

https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1007/s10922-019-09504-0
https://doi.org/10.1007/s10922-019-09504-0
https://doi.org/10.1016/j.future.2024.03.007
https://doi.org/10.1016/j.future.2024.03.007

9 J. Sci. Trans. Environ. Technov.2024

Shahid, M.A., Islam, N., Alam, M.M., Su’ud, M.M.
& Musa, S. 2020. A comprehensive
study of load balancing approaches in
the cloud computing environment
and a novel fault tolerance approach.
IEEE Access, 8, pp.130500–130526.

Singh, [Initials], et al. 2020. [Title].
[Journal/Conference].

Tong, Z., Deng, X., Ye, F., Basodi, S., Xiao, X. &
Pan, Y. 2020. Adaptive computation
offloading and resource allocation
strategy in a mobile edge computing
environment. Information Sciences, 537,
pp.116–131.

Yin, L., Li, P. & Luo, J. 2021. Smart contract service
migration mechanism based on
container in edge computing. Journal
of Parallel and Distributed Computing,
152, pp.157–166.

